Two-dimensional Shape Functions

From KratosWiki
(Difference between revisions)
Jump to: navigation, search
Line 23: Line 23:
 
|}
 
|}
  
 +
 +
A quick way to easily obtain the terms of a complete polynomial is by using the '''Pascal's triangle''':
 +
 +
 +
{| border="1" cellpadding="5" cellspacing="0" class="wikitable" style="margin:auto; background:white;"
 +
|- align="center"
 +
| &nbsp; || <math>1 \,</math>
 +
|- align="center"
 +
| Linear || <math>x \qquad y \,</math>
 +
|- align="center"
 +
| Quadratic  || <math>x^2 \qquad 2 x y  \qquad y^2\,</math>
 +
|- align="center"
 +
| Cubic || <math>x^3 \qquad 3 x^2 y  \qquad 3 x y^2 \qquad y^3\,</math>
 +
|- align="center"
 +
| Quartic || <math>x^4 \qquad 4 x^3 y  \qquad 6 x^2 y^2 \qquad 4 x y^3 \qquad y^4\,</math>
 +
|}
  
  

Revision as of 10:28, 4 November 2009

Shape functions are selected to fit as exact as possible the Finite Element Solution. If this solution is a combination of polynomial functions of nth order, these functions should include a complete polynomial of equal order.

That is, a complete polynomial of nth order can be written as:


f(x,y)=\sum_{i=1}^p \alpha_i x^j y^k \qquad j+k \le n


with:   \qquad p=\frac{(n+1)(n+2)}{2}   the number of terms.


More specifically:


polynomial order n number of terms p f(x,y) \,
Constant: 0 \, 1 \, \alpha \,
Linear: 1 \, 3 \, \alpha_1+\alpha_2 x + \alpha_3 y \,
Quadratic: 2 \, 6 \, \alpha_1+\alpha_2 x + \alpha_3 + \alpha_4 x y +\alpha_5 x^2 + \alpha_6 y^2\,


A quick way to easily obtain the terms of a complete polynomial is by using the Pascal's triangle:


  1 \,
Linear x \qquad y \,
Quadratic x^2 \qquad 2 x y  \qquad y^2\,
Cubic x^3 \qquad 3 x^2 y  \qquad 3 x y^2 \qquad y^3\,
Quartic x^4 \qquad 4 x^3 y  \qquad 6 x^2 y^2 \qquad 4 x y^3 \qquad y^4\,



For example, in the case of a lineal polynomial:


f(x,y) = α1 + α2x + α3y


can only fit polynomial functions of pth order if they content a polynomial function


for any polynomial function of pth order it is enough to use p-1 integration points.




References

  1. Pascal's triangle
Personal tools
Categories