Working
Contents

Computational Fluid Dynamics module
Introduction
Examples showing the class of problems that the code can solve (24 examples)
Description of the underlying theory and schematic list of the problems this application can solve.
In this application the Navier Stokes equations are solved bla bla..
Structure
Fluid types
 Incompressible fluid
 Compressible fluid
Constitutive laws
 Newtonian
 NoNewtonian
 Bingham plastics
 Variable yield model
Kinematical approaches
 Eulerian
 With free surface (level set)
 Without free surface
 Lagrangian PFEM (implicitly with free surface)
Solution strategy
 Fractional step
 Monolithic
Different solvers are availables (LINK TO SOLVER SECTION!!!!)
In both cases a Newton Raphson residual based strategy is used for linearizing the problem.
Elements
Linear triangular elements in 2D and linear tetrahedra elements in 3D.
Stabilization techniques availables:
 ASGS
 OSS
Boundary conditions
 Velocity boundary condition: Inlet of water
 Pressure boundary condition: Pressure can be imposed strongly or weakly...
 Wall boundary condition:
 Slip/no slip boundary condition
 Wall law
 Flag variable?????
Initial conditions
Initial condition both in velocity and pressure can be set.
Turbulence models
The user can chose wether to use or not a turbulence model. Those available in kratos are:
 SmagorinskyLily
 SpalartAllmaras
HPC
The code can be run in shared or distributed memory:
 OpenMP:
 MPI:
Problem parameters
Others relevand aspects
Benchmarking
Tutorials
Contact people
Akcnowledgements
Computational Structural Mechanics module
Introduction
Description of the underlying theory and schematic list of the problems this application can solve.
The Computational Structural Mechanics module (CSM) is....
Structure
Analysis Type
The available solutions strategies are:
 Static
 Dynamic
 Relaxed dynamic
With this module you can solve both linear and non linear problems. In case of non linear problems several methods are available:
 NewtonRaphson
 Newton Raphson with line search
 Arch lenght
Different solvers are availables (LINK TO SOLVER SECTION!!!!)
Elements
 Frame Elements:
 EulerBernoulli beam short explanation
 Crisfield truss short explanation
 2D elements
 Linear triangular element:
 Shell elements:
 Isotropic shell: (change the name with the usual one!!!!)
 Ansotropic shell: (change the name with the usual one!!!!)
 EBST shell: (change the name with the usual one!!!!)
 Membrane element:
 Solid elements:
 Linear tetrahedral element:
Boundary Conditions
Boundary conditions can be set fixing displacements and rotations degrees of freedom.
Loads
 Self weight
 Punctual force
 Moment
 Face pressure (sign convenction!!!!)
 Distributed load
Constitutive laws
The following constitutive laws are available:
 Linear elastic:
 ...
HPC
The code can be run in shared or distributed memory:
 OpenMP:
 MPI:
Problem parameters
...
Others relevand aspects
...
Benchmarking
Here validation and verification examples should be inserted
Tutorials
Contact people
Akcnowledgements
Convection Diffusion module
Introduction
Description of the underlying theory and schematic list of the problems this application can solve.